How to DIY your home energy monitor with ZENTAR CT?

How to DIY your home energy monitor with ZENTAR CT?

1.What you need to buy?
Split core current transformer from Zentar(CT313@100A)
Mircocontroller
Display
Resistors
Capacitors
Protoboards
Headphone jacks
2.Design a case by one-time 3D printer
3.Design a system to ingest data from energy monitors
4.Archiving data
5.Calculate the consumption in total
6.Arduino sofeware
7.Install current transformer
8.Expose data
9.Develop app
10.Read the datas and enjoy by yourself

Share:

Facebook
X
LinkedIn
WhatsApp
Email

More Posts

Understand and Select Rogowski Coil Parameters: A Practical Guide

As the demand for accurate, non-intrusive current measurement continues to grow in power electronics, EV charging, and industrial automation. Rogowski coils have become increasingly popular due to their flexibility, safety, and high linearity. However, for many engineers or procurement professionals unfamiliar with this technology, reading a Rogowski coil datasheet can

DIY your home energy monitor with ZENTAR CT

Build Your Own Smart Energy Monitor at Home with ZENTAR CT – Step-by-Step DIY Guide for Real-Time Power Tracking

Creating a custom energy monitor using the ZENTAR split core current transformers DIY projects are a fantastic way to engage with technology while also enhancing your home’s efficiency. One such project that will help you better understand your home’s electricity usage is creating a custom energy monitor using the ZENTAR

Impact of Frequency on Voltage Transformers: Testing at 50Hz vs. 60Hz

Voltage transformers (VTs) are essential in electrical power systems, ensuring accurate voltage measurements and system protection. But here’s the catch—these transformers behave differently depending on frequency. Testing a voltage transformer at 50Hz versus 60Hz isn’t just about a simple number change. The shift in frequency affects magnetic flux, impedance, losses,

Why Current Transformers Have Errors: Understanding the Basics

Current transformers (CTs) play a critical role in electrical systems by ensuring accurate current measurement for protection and metering purposes. However, like any other piece of technology, they are prone to errors that can affect their accuracy. In this article, we’ll explore the common sources of errors in current transformers,

Send Us A Message